Печать
Категория: Технологии Технологии
Опубликовано: 18 июля 2014 18 июля 2014
Просмотров: 3895 3895

 

Использование сверхзвуковых струй при газотермическом напылении является одним из главных направлений современного развития этой технологии. В основе метода лежит нагрев порошковых частиц с одновременным ускорением их при нанесении до сверхзвуковых скоростей. Частицы порошка посредством газовой струи переносятся на деталь, при ударе о подложку их высокая кинетическая энергия превращается в тепловую. Повышение скорости и кинетической энергии частиц напыляемого материала позволяет, с одной стороны, улучшить условия формирования покрытий, а с другой — ограничить вредное воздействие окружающей среды и снизить интенсивность процессов термического разложения материалов. В качестве напыляемых материалов используются различные металлические и металлокерамические порошки.

В мировой практике сверхзвуковое плазменное напыление реализуют с помощью установок «Plazjet-ll-200». В качестве рабочего газа используют азот или смесь азота с водородом и аргоном. При мощности установки 200 кВт температура струи достигает 6600 °С, скорость частиц в 6-8 раз выше, чем при обычном напылении. Расход порошка составляет до 12 кг/ч оксида алюминия и 40 кг/ч карбида вольфрама.

Специалистами Института электросварки им. Е. О. Патона и Института газа разработаны технология и оборудование для сверхзвукового напыления с использованием плазмы продуктов сгорания углеводородных газов с воздухом. Плазмотрон генерирует слаборасширенную струю плазмы продуктов сгорания со степенью недорасширения 1,1-3,0 м и скоростью истечения до 3000 м/с. Измерения показали, что скорость частиц на дистанции напыления 250-300 мм в случае использования порошка WC-12 Со составила 480 м/с. оксида алюминия —
420 м/с, оксида хрома — 430 м/с, железоникелевого сплава — 500 м/с.

Существует возможность регулировать температуру в пределах 3500-6500 К, что позволяет эффективно напылять как легкоплавкие материалы (алюминий и его сплавы), так и тугоплавкие (например, диоксид циркония). Пористость покрытия на оптимальных режимах составляет 0,5-3,0%, а прочность сцепления — 60-120 МПа. Производительность напыления оксида алюминия достигает 20 кг/ч, а вольфрам-кобальтовых твердых сплавов — 40 кг/ч.

При сверхзвуковом плазменном напылении добавление метана или пропан-бутана к воздуху делает высокотемпературный участок плазменной струи, в котором происходит нагрев и ускорение частиц порошка, более протяженным, а профиль температур и скоростей более заполненным. Скорость частиц порошка Al203 размером 80 мкм при сверхзвуковом газовоздушном напылении на дистанции 250 и 300 мм составляет 330-500 м/с. При этом гарантированный срок службы анода равен 40-50 ч. Ресурс работы катода с гафниевой вставкой составляет 6-10 ч, с циркониевой — 4-6 ч.

В случае сверхзвукового воздушногазового плазменного напыления аморфизирующегося сплава Fe-Mo-Cr-Ni-Bблагодаря высокой кинетической энергии частиц происходит их интенсивное расплющивание, что обеспечивает плотный контакт с основой. Это приводит к повышенной степени аморфизации напыленного материала.

При сверхзвуковом плазменном напылении покрытия из различных порошковых материалов характеризуются низкой пористостью (0-3%), высокой прочностью сцепления с основой (до 150 МПа) и повышенной микротвердостью.

В настоящее время сверхзвуковое плазменное напыление находит все более широкое применение.

Литература:

Лащенко Г.И. Плазменное упрочнение и напыление. – К.: «Екотехнологiя», 2003 – 64 с.