Электрическая прочность - это минимальное значение напряжённости электрического поля, при которой наступает пробой изоляции. Электрическая прочность изоляции является сложной функцией физических свойств материала, размеров образца, условий окружающей среды и характера приложенного напряжения.
Различают два основных вида пробоя однородных диэлектриков: электрический и тепловой. Кроме того, существует еще ионизационный пробой, который является следствием ионизации газовых включений, содержащихся в твердом изолирующем материале.
Существенное влияние на механизм пробоя в слоистой изоляции оказывает развитие скользящих разрядов вдоль лент. Электрическая прочность применяемых на практике диэлектриков существенно зависит от неоднородности поля, а также от характера и интенсивности таких процессов в них, как ионизация газовых включений и химические изменения материала изоляции. Наличие слабых мест приводит к тому, что отдельные образцы одного и того же материала пробиваются при различном напряжении, т. е. к появлению разброса значений электрической прочности, который зависит от степени однородности диэлектрика.
Обычно пробивное напряжение оценивается средним значением многочисленных результатов испытаний отдельных образцов. Для кабельной изоляции вследствие большой протяженности кабеля необходимо определить главным образом минимальное значение пробивного напряжения, возможного при данной технологии производства.
В связи с целым рядом факторов, определяющих пробивное напряжение изоляции, выбор рабочей напряженности электрического поля является сложной и ответственной частью расчета кабеля. Методы оценки пробивного напряжения и экспериментальные значения электрической прочности кабельной изоляции, а также методика выбора и расчета рабочей напряженности изоляции кабелей будут рассмотрены далее. При этом необходимо рассмотреть влияние тонких пленок газов и масел на пробой кабельной изоляции, разряды в воздушных включениях, зависимость электрической прочности от вида приложенного напряжения и длительности его действия.
Напряженность поля в газовых (а при переменном напряжении — и в масляных) включениях будет выше, чем в однородной изоляции. Это приводит к уменьшению электрической прочности изоляции, так как эти включения в электрическом отношении представляют собой ее наиболее слабые места. Как известно, электрическая прочность газа зависит от его природы и (согласно закону Пашена) является функцией произведения плотности (давления) и толщины слоя газа: Unp = f(pA).
Под электрической прочностью газовой пленки понимается напряженность электрического поля Ен, при которой начинаются разряды в газе.
Зависимость Unp = f(pA) имеет вид кривой с резко выраженным минимумом. Минимальное значение Unpдля воздуха соответствует рА = 750 Па×мм и равно 327 В. Для меньших значений рА пробивное напряжение возрастает, потому что плотность воздуха (или толщина слоя А) значительно уменьшается и ионизирующее столкновение в газовом промежутке А становится все менее вероятным. Для рА > 750 Па×мм пробивное напряжение возрастает примерно по линейному закону, который нарушается лишь при абсолютном давлении более 2 МПа.
Закон Пашена в полном виде установлен для газовых промежутков между металлическими электродами. В изоляции кабелей газовые включения располагаются или внутри изоляционного слоя, или между изоляционным слоем и металлической поверхностью жилы либо оболочки. В этом случае возможны отклонения от закона Пашена, особенно в области малых значений pD, так как возможно развитие разрядов по поверхности газовых включений.
Для воздушных прослоек, расположенных между стеклянными пластинами, С. М.Брагиным была получена зависимость Unpот рА при переменном напряжении, которую можно рекомендовать для приближенных расчетов в кабельной изоляции (рис. 1).
Рис. 1. Зависимость пробивного напряжения пленки газа от произведения рΔ
Электрическая прочность газовой пленки зависит также от природы самого газа. Для повышения электрической прочности газонаполненных кабелей применяют элегаз (SF6) и фреон (CC12F2). Электрическая прочность этих газов примерно в 2,2 — 2,5 раза выше электрической прочности воздуха.
При постоянном напряжении и высокой начальной напряженности поля Ен в газовом включении возникает ионизация, в результате которой на некоторое время (примерно на 10-7 с) газ становится проводником. При этом на поверхности включения образуется свободный поверхностный заряд. Плотность заряда распределяется таким образом, что напряженность поля этого заряда частично компенсирует внешнее приложенное поле и результирующее поле в газовом включении будет значительно уменьшается. Это приводит (при некоторой напряженности поля погасания Еп) к прекращению ионизации, и воздушное включение снова становится непроводником (рис. 2). Период существования ионизации на рисунке обозначен ∆t1. В дальнейшем свободные заряды стекают через диэлектрик, и напряженность поля во включении нарастает по экспоненциальному закону с постоянной времени релаксации . Если бы не происходило ионизации, то напряженность поля достигла бы некоторого значения Ев, но при Е = Ен ионизация возникает снова и цикл повторяется. Время цикла определяется в основном периодом между погасанием и зажиганием ∆t2, который зависит от постоянной времени релаксации τ. Значение τ для высококачественных диэлектриков находится обычно в пределах от нескольких секунд до десятков секунд (в полиэтилене — нескольких часов).
Рис. 2. Напряженность электрического поля при разрядах в воздушных включениях
При переменном напряжении после ионизации в газовом включении также возникают поверхностные заряды, поле которых в один полупериод направлено против внешнего поля. Но в следующий полупериод внешнее поле изменяет направление, и поле зарядов уже не ослабляет его, а усиливает, что приводит к новой вспышке ионизации. В зависимости от внешнего напряжения частота этих вспышек может быть в два или более раз выше частоты напряжения, т. е. возможно возникновение интенсивной ионизации.
Таким образом, влияние ионизации на процесс старения изоляции при переменном напряжении будет значительно больше, чем при постоянном напряжении.
Наличие интенсивной ионизации при переменном напряжении является одним из основных факторов, ограничивающих рабочую напряженность поля в изоляции.
Отказ (выход из строя) кабеля происходит вследствие накопления признаков старения в процессе эксплуатации или ускоренных испытаний. Многочисленные эксперименты показали, что время наработки (до пробоя изоляции) для заданных температуры Т, напряженности электрического поля Е и степени старения может быть представлено функцией
где А и п — постоянные коэффициенты для данной изоляции; W— энергия активации процесса старения, Дж/моль; R = 8,31 Дж/(моль•К).
Зависимость tpот Е представлена на рис. 3. На участке 1 коэффициент п велик вследствие малого времени воздействия напряжения (импульсов), а на участке 2 при меньшей напряженности поля значение п существенно уменьшается. На этом участке возникают частичные разряды. На участке 3, где интенсивность частичных разрядов слабая, коэффициент п снова возрастает. По данным многочисленных публикаций, электрического старения на участке 3 почти не происходит, если интенсивность частичных разрядов в изоляции не превышает некоторого безопасного уровня.
Рис. 3. Логарифмическая зависимость tр от Е:
1...3— участки характеристики
В кабелях с изоляцией, пропитанной вязким электроизоляционным составом, возможно образование газовых включений, в которых возникают частичные разряды. Исследования при циклическом режиме нагревания и охлаждения были проведены для кабелей на напряжение 35 кВ марок ААШв 1x120 и АСШв 1x150 lизоляцией, пропитанной составом МП-2, и марки ЦАСШв с пропиткой нестекающим составом МП-5. Образцы кабелей длиной 30 м с герметизированными концевыми заделками подвергали циклическому нагреванию и охлаждению до температуры окружающей среды. Внутри жилы и под оболочкой были смонтированы медные трубки, соединенные с манометрами. Установлено, что в период охлаждения давление в кабеле становится ниже атмосферного, что приводит к образованию газовых включений с пониженным давлением. В соответствии с законом Пашена это способствует возникновению частичных разрядов.
Измерения зависимости tgδ от напряжения показали, что в период нагревания приращение его с повышением напряжения отсутствует, а это свидетельствует об отсутствии частичных разрядов. В период охлаждения происходит увеличение tgδ, что характерно для напряжения нормальной эксплуатации кабелей или меньшего. Это особенно важно при перенапряжениях, возникающих в кабелях в режимах с одноместным замыканием на землю в сетях с изолированной нейтралью (при линейном напряжении вместо фазного между жилой и оболочкой).
В период нагревания изоляция подвергается медленному старению по механизму термической деструкции. В период охлаждения происходит ее старение под действием ионизации в газовых включениях, а термическое старение замедляется в связи с понижением температуры. Для выражения такого комплексного старения предложена эмпирическая зависимость, подтвержденная экспериментально:
где Unp— пробивное напряжение.
На рис. 4 приведены зависимости пробивного напряжения образцов от времени старения при различных температурах, соответствующие формуле (2). Из рис. 4 можно получить зависимость
.
Рис. 4. Логарифмическая зависимость пробивного напряжения изоляции от времени старения при различной температуре
Если цикл испытаний составляет 8 ч, то для подтверждения 30 лет срока службы кабеля на 10 кВ при длительно допустимой температуре нагревания жилы 70 °С необходимо, чтобы он выдержал без пробоя испытания в течение 400 циклов при напряжении 17,3 кВ и максимальной температуре в цикле 90 °С. Этот норматив применяется при испытаниях кабелей, если произошли изменения в составе изоляции.
В маслонаполненных кабелях повышенное давление в пропитывающем бумажную изоляцию масле предотвращает образование газовых включений и возникновение в них частичных разрядов. При термическом старении изоляции происходит возрастание tgδ и постепенное повышение температуры изоляции, которое приводит в конечном счете к тепловому пробою.
В процессе старения пропитанной бумажной изоляции происходит выделение газообразных продуктов термической деструкции: водорода, метана, СО2, СО и др. Содержание газов в пропитывающем составе определяют по пробам масла, взятым из кабельной линии с применением метода газовой хроматографии. Если содержание газов превысит предел их растворимости в пропитывающем составе при нижнем пределе давления в кабельной линии, могут образовываться газовые включения и возникать частичные разряды, которые приведут к ускоренному старению и пробою изоляции.
При расчете полиэтиленовой изоляции кабелей высокого напряжения используют средние значения допустимой напряженности электрического поля в изоляции, а также проводят расчет по электрической прочности при воздействии импульсных перенапряжений (аналогично маслонаполненным кабелям). Толщину изоляции определяют по формуле
Δиз = U/Ep,
где U — расчетное напряжение; Ер — расчетное значение средней напряженности поля.
В качестве изоляции применяют полиэтилен низкой плотности, сшитый с применением перекиси дикумила. Процесс сшивания и охлаждения изоляции проводят при повышенном давлении (1 ...2 МПа), что предотвращает образование газовых включений и частичных разрядов в изоляции.
В формуле (1) п > 12 при отсутствии влаги (имеется металлическая оболочка) и п≈10 при возможности воздействия влаги в процессе эксплуатации.
Многочисленные экспериментальные данные по старению полиэтиленовой изоляции показали, что в ней образуются дефекты, получившие название триинги. Различают электрические и водные триинги. После эксплуатации в течение нескольких лет кабелей на напряжения 6... 10 кВ при контакте с влагой триинги увеличиваются по длине и, достигая нескольких десятых долей миллиметра, приводят к пробою изоляции.
Литература:
Основы кабельной техники/ под ред. И.Б. Пешкова. - М.: Издательский центр «Академия», 2006. – 432 с.